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Just as Bayes deserves and gets credit for noticing an interesting
but mathematically trivial consequence of the product axiom of prob
ability, so Jeffreys and Turing deserve credit for noticing a further
mathematically trivial but interesting consequence of Bayes' theorem.
This consequence is expressible in terms of what is often called a
Bayes factor, although it would be as just to ascribe Bayes' theorem
to Fermat, who was possibly the first person to enunciate the prod
uct axiom.

In this paper we list some of the properties of the Bayes factor,
without proofs. Most of the proofs are simple, available elsewhere,
and omitted. No examples will be given: a list is a list is a list.
But a few historical notes are included. See also Reference [7].

Let E denote an experimental result or evidence, let H denote a
hypothesis, and let H denote its negation. We use the symbol U
to mean "or", so that, for example, A U B means either A or B or
both, and a period for "and." When H and H' are hypotheses and
H U H' is taken for granted, then H is another notation for H'.
The probability of E given H is denoted by P(EIH), where the verti
cal stroke is pronounced "given." If p is a probability, the corre
sponding odds are defined as pl(l - p). It is a simple consequence
of the product axiom of probability that

O(HIE)
O(H)

where O(H) are the odds of H.

P(EIH)
P(EIH) ,

(1)

Bayes' theorem, in the form stated by Jeffreys in his Theory of
Probability, asserts that

P(HIE) is proportional to P(H)P(EIH) , (2)

when there are several hypotheses. IProof: P(HIE) = P(H)P(EIH)j
peE), end of proof.] To obtain (1), replace H by H in (2) and
divide. Jeffreys noticed (2) in 1935, but in his book he invariably
takes O(H) = 1, and so obscures the issue.

Turing fortunately did not know in 1940 that P(E]H) is called the
likelihood of H given E, since he otherwise might not have named
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O(HIE)/O(H) the factor in favour of H provided by E, which is a phrase
of immediate intuitive appeal. A pronounceable notation for it is
F(H:E), where the colon is pronounced provided by. It is the factor
by which the initial odds of H are multiplied, in the light of the evi
dence, in order to get the final odds. I ts logarithm is called the
"log-factor" or the "weight of evidence," W(H:E), in favour of H
provided by E. When the base of the logarithms is 10, Turing called
the unit in which the log-factor is measured a ban or ten decibans,
by analogy with "decibels." If we wish to make it clear that we
are assuming HI U H 2 , a convenient notation is F(HI:EIHI U H 2)

= F(HI/H2:E) , pronounced the factor in favour of HI as against H 2 ,

provided by E. The notations

and their pronunciations, are now self-evident.

When Hand H are "simple statistical hypotheses," equation (1)
states that the factor in favour of H is equal to the likelihood ratio.
But in more general circumstances the "likelihood ratio" means a
ratio of maximum likelihoods, and then the Bayes factor is not equal
to a likelihood ratio. Even when equality holds, the expression
"factor in favour of a hypothesis" puts the emphasis on the other
side of the equation and so is not semantically identical with "likeli
hood ratio."

Theorem 1.
W(H:E) = I(H:E) - I(H:E) ,

where I(H:E) is the amount of information concerning H provided
by E, i.e.,

P(H·E)
I(H:E) = log P(H)P(E) .

Theorem 2. If there is more than one piece of evidence, and if
these pieces of evidence are statistically independent given Hand
also given H, then the factors are multiplicative and the log-factors
are additive.

Theorem 3. If an experiment has various possible experimental
results, E 1 , E~, ... , then the expected log-factor in favour of H,
when H is true, is positive, and, when H is false, is negative. More
shortly: an expected log-factor for a true hypothesis is positive.
(The expectation is zero only if the experiment is irrelevant to H.)

Theorem 4. If HI and H 2 are mutually exclusive, H = HI U H 2 ,

and P(EIH~) = P(EIH), then
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F(H:E) = pf + 1 - p ,

where p = P(HIIH), f = F(H:EIHI U H) .
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Tlu!orem 5. (The "weighted average of factors")

(i) Let HI, H 2 , H a, ... be mutually exclusive, and let H = HI
U H 2 U H:l U . . .. Then

where
F(H:E) = ~pJi'

Pi = P(HiIH), fi = F(H:EIHi U H) .

(ii) Let HI, H 2 , H a, ••• be mutually exclusive and let H' = HI
U H 2 U H a U . . .. Then

, , P(EIH·H;)
F(H:EIH) = ~,P(H,IH·H) P(EIH.H') ,

and, if P(EIH·H;) is mathematically independent of i,

F(H:EIH'l = ~;P(HiIH·H')F(H:EIHi) .

(iii) Let HI, H 2 , H a, ••• be mutually exclusive and exhaustive.

Then
. F(H:E) = ~iP(H;IH)P(EIH·Hi)/P(EIH) ,

and, if P(EIH·H,) is mathematically indepenent of i,

Tlu!orem 6. If evidence arrives in a large number of small inde
pendent pieces, then the total log-factor will have approximately a
normal distribution if H is true, and also if H is false. (This can be
rigorously stated by reference to any rigorous statement of the Cen
tral Limit Theorem.)

Tlu!orem 7. Let x = W(H:E). Then

W(H:E) = WIH:W(H:E) I = W(H:x) ,
so that

P(xIH) = e"'P(xIH) .

Tlu!orem 8. Under the conditions of Theorem 5,

E(W(H:E)IH) "" -E(W(H:E)!H) ,

i.e., the expected log-factor in favour of H if H is true is approxi
mately equal and opposite to the expected log-factor in favour of H
if H is false.
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Theorem 9. Also under the conditions of Theorem 5,

var(W(H:E)IH) ~ var(W(H:E)/H)
~ 2E(W(H:E)/H) ,

if natural logarithms are used.

Corollary.

S.D. (W(H:E)IH) ~ 3 VE(W(H:E)IH)

if the unit is the deciban.

Theorem 10. ("False alarm probabilities.") Suppose that the
distribution of x = W(H:E), given H, is approximately normal in
the neighbourhood of Xo = E(W(H:E)IH), in "natural bans" (loga
rithms to base e). Let a "threshold" t be selected near X o• Then
the "false alarm" probability

P(x > tlH) ~ e(l/2)u2- xu 1J; ((1 + t-:.Xo
) ,

where
~

1J;(u) = ~1ff e(-l/2)Z2 dz ,

(12 = var(xIH) .

Theorem 11. Let an experiment be performed, of various possible
results, such as E, and let

Then
F(H:E) = f.

E(fIH) = 1 .

Theorem 12. In the notation of Theorem 11,

E(fniH = E(f"+ljH) ,

for any real number n; for example,

E(f-l!2IH) = E(fl/2[H) .

More generally, for any function 1J;(f),

EI1J;(f)IH} = E IN(f)\HI .
Theorem 13.

P(f ~ glH) ~ g .

Theorem 14. Let an experiment, E, have only two possible out
comes E I and E 2 , where P(EIIH) > P(EdH). Then
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E1W(H:E)IHI < IE{W(H:E)IHII

if and only if peEl IH) > P(E2IH).
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NOTES CONCERNING THE THEOREMS

Theorem 1. This is mentioned because it shows perhaps the sim
plest connection between Turing's Theory of evidence and Shannon's
theory of information. The advantage of using the term "evidence"
or "weight of evidence," rather than "information," for the log
factor is that the log-factor was in use long before Shannon's work.
It is historically misleading to call the log-factor "information,"
since it gives the false impression that it was derived from Shannon's
work.

Theorem 2. In view of this theorem, Turing pointed out the possi
bility of a sequential use of log-factors, in which one can accept H
when the cumulative log-factor reaches some threshold, or reject it
if the cumulative log-factor falls below some other threshold. He
also pointed out that one could estimate in advance the number of
trials required in order to achieve some threshold, but he did not
work out any of the relevant random-walk theory. A. Wald carried
this part of the theory much further when he independently intro
duced the sequential log-factor method some years later. (Ref. [1].)

Theorem 3 shows that it can never be wrong in expectation to look
at new evidence, if the cost of doing so be ignored. This is intuitively
obvious, and so corroborates that we are using a sensible definition
of weight of evidence. (See also Ref. [3].)

Theorems 2, 3, and 4 are due to Turing. Theorem 5 is my gener
alization. (5(i) was stated on p. 68 of Ref. [2]. Chapter VI of
Ref. [2) mentions several of the results of the present paper.)

Theorem 6. Turing's Fellowship thesis at King's College, Cam
bridge, was concerned with the Central Limit Theorem, but he did
not publish it because he found that the work had already been
done by Feller in 1935.

Theorems 6 to 9 are due to Turing. (The corollary to Theorem
9 is my trivial transformation of it.) (See p. 73 of Ref. [2], and pp.
129-130 of Ref. [4].) The generalization, Theorem 10, was noticed
independently by R. B. Dawson and myself. (See Ref. [4], which
contains further results. See also Ref. [5] and [6].) Theorem 11 is
Turing's and Theorem 12 is a generalization of mine.

Theorem 13 was first drawn to my attention by G. C. Wall in 1949.
Like some other results in this paper, this one is probably in Ref.
[1). Theorem 14 was noticed by me in 1948.
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